Project Title:

Studies on Determination of Free Silica (a-Quartz) Content in Respirable Air Borne Dust (ARD) in Coal Mines and Preparation of Data Bank of Free Silica and other Minerals present in Dust as well as in Coal.

Project No. GAP/MS/MOC/85/2010-11

Executive Summary:

Most of the coal mining operation generate significant amount of respirable dust. Prolonged exposure of this dust is known to cause various respiratory diseases including the deadly pneumoconiosis among the miners. However, coal mining is inevitable for meeting energy requirement of the country and in absence of any alternatives potential clean energy source, it will continue to maintain its lead for foreseeable future. With increased level of mechanization and pressing demand to boost production for minimizing demand supply gap, problem of air borne respirable dust is increasing every day.

Indian coals are considered to be of 'drift' origin and therefore contain high mineral matter. Quartz is one of the major minerals present in coal and therefore miners are exposed to health risks due to inhalation of quartz laden coal dust. The health risk of the miners depends on the nature of coal and its mineral content, condition of the mines, nature of job handled and finally the quality and efficacy of the safety measures adopted.

With a view to protect miner's health and to provide safe and healthy work place environment, various provisions have been made in the regulation. This involves periodical monitoring of Respirable Airborne Dust in mines and taking appropriate ameliorative measures when dust concentration exceeds its permissible limit value (TLV). This TLV varies and reduces below 3mg/m³ with increasing free silica content in the dust beyond 5%. Therefore determination of free silica concentration of airborne respirable dust is of prime importance to ascertain the safe and healthy working environment. The free silica determination in vary small amount of airborne dust sample collected on small dia (25 mm) filter paper are technology intensive involving costly and sophisticated instruments, which may not be feasible to be maintained at mine management level.

National Dust Prevention Committee (NDPC) has also expressed serious concerns about growing problem of dust hazards and emphasized to eradicate pneumoconiosis completely. Accordingly, CSIR-CIMFR, Dhanbad has taken up a research project entitled, "Studies on Determination of Free Silica (α -Quartz) Content in Respirable Air Borne Dust (ARD) in Coal Mines and Preparation of Data Bank of Free Silica and other Minerals present in Dust as well as in Coal" with following five objectives:

- (a) Determination of Free silica Content in Air Borne Respirable Dust samples from various statutory required representative workplaces and identified class of workforces.
- (b) Determinations of free silica content from coal/rock samples collected from the parent body and study its correlation with free silica content of air borne respirable dust samples.
- (c) Preparation of data bank of free silica content representing almost all types of working seam and excavating technology as a ready reference tool for free silica content.
- (d) Determination and preparation of Database for minerals associated with coal seams of different location.
- (e) Organisation of Training and Awareness Programmes related to

Dust Sampling and analysis.
The project was taken up to cover most of the mines of various subsidiaries of Coal India Limited (CIL) and is expected to provide following deliverables.
 An updated status report of air borne respirable dust conditions prevailing at various workplaces representing all geo-mining conditions in various coalfields. A databank of free silica content of different seams which can be used a ready reference tool for ascertaining free silica content of air borne dust in any specific situation with reasonable accuracy. An empirical relation between the free silica content of air borne respirable dust and its parent/host rock will be established which may be very useful in ascertaining free silica content without going through a costly and sophisticated instrumental analytical procedure. Determination and Preparation of Database for minerals and trace metals associated with coal seams of different location. No such data base is available for Indian coal Seam at present. Such database may help in better utilization of coal. All the potential grey area needing remedial steps will be identified, categorized/ classified and site specific possible ameliorative advisory measure will be provided. Well trained team of officers and supervisors in various mines and subsidiaries for conducting air borne dust related studies.
The project implantation started with development of laboratory equipped with state-of-the- art-facilities for taking up the study which were hitherto not available in India. Accordingly the following facilities were created which will not only become a tool for the conducting the present study under project but will become centre for excellence for all aspects of study related to air borne respirable dust in future.
 Fourier Transform Infrared Spectroscopy (FT-IR) X-ray Diffraction Spectrometer (XRD) Microbalance with charge remover facility DGMS approved personal dust samplers Real time Aerosole Monitor
After procurement of above equipment, following facilities and capabilities were developed for analytical required under the R&D project:
 A quick, reliable and non-destructive method for quantitative determination of free silica present in air borne respirable dust deposited on filter papers was developed. The method essentially requires calibration of FTIR for quantitative analysis using MDHS 101 guidelines. For the same, a calibration chamber was developed in the laboratory for calibrating peak height of the silica obtained from the FTIR spectrum with amount of free present in filter paper. A calibration equation was developed for quantitative estimation of free silica in dust deposited on filter paper. This fulfils the DGMS requirement

	ID(M/N (fach) circular of 70101 for	determination of t	
	in air borne respirable dust.		ree sinca
2.	Analysis of airborne respirable du	ist using XRD f	or phase
	identification and semi quantitative a present in it.	analysis of various	minerals
3. 4. 5.	Microbalance with charge removin accurate weighing of small amount paper which are prone to be erroned electrostatic charges during sampling DGMS approved personal dust sam borne respirable dust sampling i guidelines and provisions of Coal Min Real time aerosol monitor for studyi in work place environment specially total respirable dust along with facilit filter paper for its laboratory analysis Laboratory equipped with air conditi equilibration of filter papers before as for housing FT-IR and other associa	g facilities were of dust deposited ous due to accumu g mpling for condu n miners as per nes Regulations Ad ng the particle siz in PM1, PM2.5, P ty for collecting th ioning and dehumi and after sampling iated set ups.	used for l in filter alation of acting air c DGMS ct, 1957. te of dust PM10 and te dust on adifier for g as well
require ensure	d the support of supervisor and staff accuracy and consistency in air born g programs as per following scho	of mines for same respirable dust sedule were organ	pling. To sampling, nized for
executi equipm identifi	ves/supervisors/staffs on methodolo ent and sample handling and cation sheet.	ogy for sample of preparation of	ollection, sample
executi equipm identifi	ves/supervisors/staffs on methodolo ent and sample handling and cation sheet.	by for sample compreparation of Dates of	ollection, sample
executi equipm identifi Sl. No.	ves/supervisors/staffs on methodolo ent and sample handling and cation sheet. Subsidiary/place the training program organized	Degy for sample or preparation of Dates of Training Programs	ollection, sample No of persons trained
executi equipm identifi Sl. No.	ves/supervisors/staffs on methodolo ent and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC	Dates of Training Programs 16-17 April 2013	ollection, sample No of persons trained 47
executi equipm identifi No.	Ves/supervisors/staffs on methodologic nent and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC Bharat Coking Coal Limited (BCCL)	Dates of Training Programs 16-17 April 2013 08-09 April 2013	ollection, sample No of persons trained 47 83
anning executi equipm identifi Sl. No. 1 2 3	ves/supervisors/staffs on methodologic nent and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC Bharat Coking Coal Limited (BCCL) Central Coalfields Limited (CCL) Central Coalfields Limited (CCL)	Dates of Training Programs 16-17 April 2013 08-09 April 2013 18 April 2013	ollection, sample No of persons trained 47 83 51
a sl. No. 1 2 4	ves/supervisors/staffs on methodologient and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC Bharat Coking Coal Limited (BCCL) Central Coalfields Limited (CCL) South Eastern Coalfields Limited (SECL)	Dates of Training Programs 16-17 April 2013 08-09 April 2013 18 April 2013 24-25 April 2013	ollection, sample No of persons trained 47 83 51 91
a anna executi equipmidentifi sl. No.	ves/supervisors/staffs on methodologient and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC Bharat Coking Coal Limited (BCCL) Central Coalfields Limited (CCL) South Eastern Coalfields Limited (CCL) South Eastern Coalfields Limited (SECL) Mahanadi Coalfields Limited (MCL)	Dates of Training Programs 16-17 April 2013 08-09 April 2013 18 April 2013 24-25 April 2013 24-25 April 2013	ollection, sample No of persons trained 47 83 51 91 37
aming executi equipm identifi Sl. No. 1 2 3 4 5 6	ves/supervisors/staffs on methodologic nent and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC Bharat Coking Coal Limited (BCCL) Central Coalfields Limited (CCL) South Eastern Coalfields South Eastern Coalfields Limited Mahanadi Coalfields Limited (MCL) Western Coalfields Limited	Dates of Training Programs 16-17 April 2013 08-09 April 2013 18 April 2013 24-25 April 2013 24-25 April 2013 22 April 2013 22 April 2013	ollection, sample No of persons trained 47 83 51 91 37 65
a anna executi equipmi dentifi sl. No.	ves/supervisors/staffs on methodologient and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC Bharat Coking Coal Limited (BCCL) Central Coalfields Limited (CCL) South Eastern Coalfields Limited (CCL) Mahanadi Coalfields Limited (MCL) Western Coalfields Limited (WCL) Northern Coalfields Limited (NCL)	Dates of Training Programs 16-17 April 2013 08-09 April 2013 18 April 2013 24-25 April 2013 24-25 April 2013 24-25 April 2013 26-27 April 2013 26-27 April 2013	ollection, sample No of persons trained 47 83 51 91 37 65 25
Sl. No. 1 2 3 4 5 6 7 8	ves/supervisors/staffs on methodologient and sample handling and cation sheet. Subsidiary/place the training program organized Eastern Coalfields Limited +NEC Bharat Coking Coal Limited (BCCL) Central Coalfields Limited (CCL) South Eastern Coalfields Limited (CCL) South Eastern Coalfields Limited (MCL) Western Coalfields Limited (MCL) Northern Coalfields Limited (NCL) Northern Coalfields Limited (NCL) SIGIR-CIMFR, Dhanbad (participant from all subsidiaries)	Dates of Training Programs16-17 April 201308-09 April 201318 April 201324-25 April 201322 April 201326-27 April 201323 Sept. 20139 Sept 2013	No of persons 47 83 51 91 37 65 25 17

training For sa sample advise followe 1. 2.	g booklet during traini mpling purpose 100 rrs were procured and of Coal India Lim ed to collecting the sar One nodal officer was responsible for co- or from each mines unde Filter papers after i coding were given to for each filter sar officer/supervisor res description of sample Attempts were mad operations and work (category workers) for	ng for its nos of 1 distribute ited. Fol nples and s identifie dinating a er the subs ts temper each min mple wh ponsible s, samplir e to cov ker work for which	DGMS a ed in vari lowing s its analys d in all th irborne r idiary. rature eq e for sam tich nee for sam for sam uich nee for sam uich nee for sam for sam a DGMS	pproved pe ious subsidi sampling st sis. ne subsidiari espirable du uilibrations, apling along ds to be ole. The for & duration, I major dust e to these guidelines	rsonal dust aries as per rategy was es who was ast sampling , weighing, with a form filled by rm requires location etc. generating operations were also	
3.	Coal and immediate n the seams which were	rock samp e processe	bles were and and an	also collect alysed in the	ted from all e laboratory	
4. A total	One software Alpha managing, analysing, in the project. All the leading to development of 285 coal mines w	er mineral a quartz utilising t he data v nt of a DA ere cover	content. was de he vast an vere in e ATA BAN ed in the	veloped for nount of dat ntered in the K. study where	r handling, ta generated he softwere ein 2301 air	
4. A total borne i various Sl. No.	One software Alpha managing, analysing, in the project. All the leading to development of 285 coal mines were spirable dust sample adifferent coal mines.	a quartz utilising t ne data v nt of a DA ere covera es, as deta Total no. of areas	content. was de he vast ar vere in e TA BAN ed in the iled belo Total no. of mines	veloped for mount of dat intered in th K. study where w, were col No of ARD samples- personal sampling	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling	Total No. of ARD samples
4. A total borne r various Sl. No.	One software Alpha managing, analysing, in the project. All the leading to development of 285 coal mines were spirable dust sample s different coal mines.	a quartz utilising t ne data v nt of a DA ere covera es, as deta Total no. of areas 13	content. was de he vast ar vere in e TA BAN ed in the iiled belo Total no. of mines 23	veloped for mount of dat ntered in th K. study where w, were col No of ARD samples- personal sampling 140	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil	Total No. of ARD samples 140
4. A total borne i various Sl. No. 1. 2.	One software Alpha managing, analysing, in the project. All the leading to development of 285 coal mines were spirable dust sample so different coal mines. Subsidiaries BCCL, Dhanbad CCL, Ranchi	Total no. of areas 13 18	content. was de he vast ar vere in e TA BAN ed in the iled belo Total no. of mines 23 61	veloped for mount of dat intered in th K. study where w, were col No of ARD samples- personal sampling 140 239	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil Nil	Total No. of ARD samples 140 239
4. A total borne r various Sl. No. 1. 2. 3.	One software Alpha managing, analysing, in the project. All the leading to development of 285 coal mines were spirable dust sample s different coal mines. Subsidiaries BCCL, Dhanbad CCL, Ranchi ECL, Sanctoria	Total no. of areas 13 15	content. was de he vast au vere in e TA BAN ed in the iiled belo Total no. of mines 23 61 63	veloped for mount of dat intered in th K. study where w, were col No of ARD samples- personal sampling 140 239 326	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil Nil Nil 46	Total No. of ARD samples 140 239 372
4. A total borne i various Sl. No. 1. 2. 3. 4.	Iter free sinca and ond One software Alpha managing, analysing, in the project. All th leading to development of 285 coal mines w respirable dust sample s different coal mines. BCCL, Dhanbad CCL, Ranchi ECL, Sanctoria MCL, Sambalpur	Total no. of areas 13 15 10	content. was de he vast ar vere in e TA BAN ed in the iled belo Total no. of mines 23 61 63 22	veloped for mount of dat intered in th K. study where w, were col No of ARD samples- personal sampling 140 239 326 328	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil Nil 46 63	Total No. of ARD samples 140 239 372 391
4. A total borne r various Sl. No. 1. 2. 3. 4. 5.	Iter free sinca and ond One software Alpha managing, analysing, in the project. All th leading to development of 285 coal mines w respirable dust sample s different coal mines. BCCL, Dhanbad CCL, Ranchi ECL, Sanctoria MCL, Sambalpur NCL, Singrauli	Total no. of areas 13 10 10 10	content. was de he vast ar vere in e TA BAN ed in the iiled belo Total no. of mines 23 61 63 22 10	veloped for nount of dat ntered in th K. study where w, were col No of ARD samples- personal sampling 140 239 326 328 244	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil Nil Nil 46 63 36	Total No. of ARD samples 140 239 372 391 280
4. A total borne i various Sl. No. 1. 2. 3. 4. 5. 6.	Interview Subsidiaries BCCL, Dhanbad CCL, Ranchi ECL, Sanctoria MCL, Sambalpur NCL, Singrauli NECL, Margherita	Total no. of areas 13 18 10 10 01	content. was de he vast ar vere in e TA BAN ed in the iled belo Total no. of mines 23 61 63 22 10 01	veloped for mount of dat intered in th K. study where w, were col No of ARD samples- personal sampling 140 239 326 328 244 30	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil Nil 46 63 36 Nil	Total No. of ARD samples 140 239 372 391 280 30
4. A total borne r various Sl. No. 1. 2. 3. 4. 5. 6. 7.	Iter free sinca and ond One software Alpha managing, analysing, in the project. All th leading to development of 285 coal mines w respirable dust samples s different coal mines. BCCL, Dhanbad CCL, Ranchi ECL, Sanctoria MCL, Sambalpur NCL, Singrauli NECL, Margherita SECL, Bilaspur	Total no. of areas 13 10 10 10 10 18	content. was de he vast ar vere in e TA BAN ed in the iiled belo Total no. of mines 23 61 63 22 10 01 66	veloped for mount of dat intered in th K. study where w, were col No of ARD samples- personal sampling 140 239 326 328 244 30 622	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil Nil 46 63 36 Nil 34	Total No. of ARD samples 140 239 372 391 280 30 656
4. A total borne i various Sl. No. 1. 2. 3. 4. 5. 6. 7. 8.	Iter interview One software Alpha managing, analysing, in the project. All the leading to development of 285 coal mines with in the project. All the sample in of 285 coal mines with sample in of 285 coal mines with sample in of 285 coal mines with sample s different coal mines. sample BCCL, Dhanbad CCL, Ranchi ECL, Sanctoria MCL, Sambalpur NCL, Singrauli NECL, Margherita SECL, Bilaspur WCL, Nagpur	Total no. of areas 13 18 15 10 10 01 18 10	content. was de he vast ar vere in e TA BAN ed in the iled belo Total no. of mines 23 61 63 22 10 01 66 39	veloped for mount of dat intered in th K. study where w, were col No of ARD samples- personal sampling 140 239 326 328 244 30 622 193	r handling, ta generated he softwere ein 2301 air lected from No of ARD samples- static sampling Nil Nil 46 63 36 Nil 34 Nil	Total No. of ARD samples 140 239 372 391 280 30 6556 193

air borne respirable dust generated in the work places.

Sl. No.	Subsidiaries	Total no. of areas	Total no. of mines	Total samples	No of coal samples	No of OB samples
1.	BCCL, Dhanbad	16	30	101	72	29
2.	CCL, Ranchi	16	47	126	72	54
3.	ECL, Sanctoria	13	50	152	115	37
4.	MCL, Sambalpur	10	22	190	120	70
5.	NCL, Singrauli	10	10	76	39	37
6.	NECL, Margherita	01	01	09	05	04
7.	SECL, Bilaspur	18	62	198	106	92
8.	WCL, Nagpur	09	25	114	56	58
	Total	93	247	966	585	381

Overall, the implementation of the project, collection and analysis of the airborne respirable dust samples lead to following conclusion and contribution to the existing state of knowledge in the research area.

- 1. An state-of-the-art laboratory has been developed at CSIR-Central Institute of Mining and Fuel Research, Dhanbad for study of various aspect of air borne respirable dust environment at different mines and other
- 2. A method for determination of free silica content was developed using FTIR following MDHS (method for determination of hazardous substances) 101 guidelines of Health and Safety Executives, Government of UK. This is a non-destructive, quick and reliable method for quantitative analysis of crystalline quartz in airborne respirable dust deposited on filter papers. The method conform prevailing statutory guidelines of DGMS (Tech) circular of 2010.
- 3. An empirical relationship has been developed for 5 micron, 25 mm filter using Perkin Elmer FTIR model spectrum which is as follows:

Quartz (mg) = $1.628 \times \text{Peak Height} + 0.021$ Similarly, the relationship for 5 micron, 25 mm filter Portable FTIR model ALPHA of Bruker, Germany is as follows: Quartz (mg) = $1.404 \times \text{Peak height} + 0.016$

4. The FTIR was also used to develop technique for determination of quartz in powder samples. The technique requires preparation of KBr mixed pellets, generating its spectrum using FTIR and developing calibration equation which is as follows: Calibration equation for spectrum 100 for 1000 mg pellet mix

True Quartz = 100/94 (3.194 × peak Height - 0.071) and For Bruker

Alpha for 1000 mg pellet mix

True Quartz = 100/94 (3.608 × Peak height -0.2591)

5. A sample filter holder has been developed which will fit exactly into sample compartment of FTIR spectrometer and facilitate taking FTIR spectra of dust loaded filter paper at different position of filter by providing rotatable specialty. This enables obtaining representative spectra for improving accuracy in the

6. 1	analysis membra Free sil collecte samples suggest X = Thus, fo varies f quartz c A total collecte criticali of view high (fr content samples as very seams dust exp high an summan presente	s result. It c ane filter of 37 n ica concentration d from different s collected from following corre = 1.0553 Y -0.92 or a quartz value rom 4.35% to 9 content of seam of 538 coal sar ed and analysed ty of the free si y, the seams hav ree silica 5-10% seams. Out of s has been foun high free silic suggests carefu posure among the d very high ry of low, hig ed below:	an accomm mm and 25 m on have beer t coal seams a work place elation equat 309 where, 2 and e of 5% to 10 .62% sugges and that in a nples from v d for its fre lica content ve been class and very h of the 538 d as low, 21 ca content s l precaution he miners wh category sea gh and very	odate both nm diameter. a determined is and airborne te in almost sa- ion X = % quartz i Y = % quartz i Y = % quartz 0% in coal, th sting almost 1: ir borne respir various coal se e silica conte from the heal sified low (fr high (free silic seams studie 5 seams as hig eams. This c ary/preventive nile working u ams. A subs y high catego	type of PV in coal sample respirable du ime area. Stud in air borne re- c in Coal e quartz in du 1 correlation able dust. eams have been th hazard poi ee silica <5% ca >10%) silic ed, 321 seam gh and 2 seam lassification of e approach fe inderground fe idiary wise ory seams a	C es sst dy spirable dust st in en of nt o), ca ns of or of re
	Sl. No.	Subsidiary	Total no of seam	No of seam with Low free silica content (<5%)	No of seam with High free silica content (>5% and	No of seam with very high free silica content (>10%)
		aar	~ 1		<10%)	
	1.	NCL	29 29	۶/ 17	1 /	0
	2.	NCL	38 75	I /	24	0
	Э. 1	DUUL	/5	51	24 4 4	0
	4. <i>ב</i>	EUL	107	03	44	0
	ָס. ∠	WUL SECI	33 05	33 76	10	2
	0. 7	MCI	7J	/0 27	19	0
	/. o	NEC	109	5/	12	0
	ð.	INEU Totol	5) 201	0	2
8. 1	Dust ex on imp operationsignific may be	aposure profile portant category ons in different ant variation wi e mainly due	study in 285 y workers i t coal mines ithin the sam to variation	521 5 coal mines y nvolved in c s. Although t ie category of in the work	vere conducte lust generation he data show workers whick	ed ng vs ch n,

 condition of machine operation and coal/rock parameters. Still a generalized trend for dust exposure and their impending risk due to the exposure is as follows: a. The mining operation which involves rock cutting viz., Continuous Miner(CM), Mechanical Operator (Road Header), Drilling, roof bolter are higher risk operations and need special care for their operators and those working in the vicinity of these operations. b. The mining operation which involves handling of for the provided head for th
dozer, Tippler SDL, LHD, Pay Loader, Trammer comes next in order.
c. All other category workers like General mazdoor, sampling mazdoor, Over man, supervisor etc may be considered low risk category worker and generalized precautions for protection against air borne respirable dust protection may be taken for these categories.
The study provides very useful information regarding dust generation behavior and trend through different mining operations, and exposure pattern of different category workers in different mines of Coal India Limited. However, its suggest further and focused studies about mining operations involving coal/rock cutting specially continuous miners which generates more dust and has promising future in boosting India's coal production. Such studies may includes (i) dust generation behavior and potential of these machines, (ii) particle size spectrum of dust generated (iii) relationship between type/amount of dust generated with rock/coal properties and (iv) optimization of dust suppressing mechanism attached with these machines, and developing ventilation standard for diluting dust generating in these operations.